A Fast Accelerated Bundle Level Method for Large Scale Convex Optimization

نویسندگان

  • Yunmei Chen
  • Peijun Li
چکیده

We present a fast accelerated prox-level (FAPL) method for large scale ball constrained and unconstrained convex optimization. It achieves optimal iteration complexity in theory, and reduces computation time and increases accuracy significantly in practice. This is accomplished by reducing the number of sub-problems involved in most existing bundle level type methods, and the novel algorithm to solve the sub-problem exactly. Our numerical results on solving large-scale least square problems and total variation based image reconstruction have shown great advantages of the FAPL methods over several state-of-the-art firstorder methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Bundle-level Type Methods for Unconstrained and Ball-constrained Convex Optimization∗

It has been shown in [14] that the accelerated prox-level (APL) method and its variant, the uniform smoothing level (USL) method, have optimal iteration complexity for solving black-box and structured convex programming problems without requiring the input of any smoothness information. However, these algorithms require the assumption on the boundedness of the feasible set and their efficiency ...

متن کامل

Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization

The main goal of this paper is to develop uniformly optimal first-order methods for convex programming (CP). By uniform optimality we mean that the first-order methods themselves do not require the input of any problem parameters, but can still achieve the best possible iteration complexity bounds. By incorporating a multi-step acceleration scheme into the well-known bundle-level method, we dev...

متن کامل

MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization

Composite convex optimization models arise in several applications, and are especially prevalent in inverse problems with a sparsity inducing norm and in general convex optimization with simple constraints. The most widely used algorithms for convex composite models are accelerated first order methods, however they can take a large number of iterations to compute an acceptable solution for larg...

متن کامل

Accelerated Primal-Dual Proximal Block Coordinate Updating Methods for Constrained Convex Optimization

Block Coordinate Update (BCU) methods enjoy low per-update computational complexitybecause every time only one or a few block variables would need to be updated among possiblya large number of blocks. They are also easily parallelized and thus have been particularlypopular for solving problems involving large-scale dataset and/or variables. In this paper, wepropose a primal-...

متن کامل

An Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP

The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying manner by Tseng, has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015